ar X iv : 1 10 4 . 12 93 v 1 [ m at h . C O ] 7 A pr 2 01 1 On perfect 2 - colorings of the q - ary n - cube ∗
نویسنده
چکیده
A coloring of the q-ary n-dimensional cube (hypercube) is called perfect if, for every n-tuple x, the collection of the colors of the neighbors of x depends only on the color of x. A Boolean-valued function is called correlation-immune of degree n − m if it takes the value 1 the same number of times for each m-dimensional face of the hypercube. Let f = χ be a characteristic function of some subset S of hypercube. In the present paper it is proven the inequality ρ(S)q(cor(f) + 1) ≤ α(S), where cor(f) is the maximum degree of the correlation immunity of f , α(S) is the average number of neighbors in the set S for n-tuples in the complement of a set S, and ρ(S) = |S|/q is the density of the set S. Moreover, the function f is a perfect coloring if and only if we obtain an equality in the above formula. Also we find new lower bound for the cardinality of components of perfect coloring and 1-perfect code in the case q > 2.
منابع مشابه
ar X iv : m at h / 01 04 17 8 v 1 [ m at h . N T ] 1 8 A pr 2 00 1 Arithmetic theory of q - difference equations
Part II. p-adic methods §3. Considerations on the differential case §4. Introduction to p-adic q-difference modules 4.1. p-adic estimates of q-binomials 4.2. The Gauss norm and the invariant χv(M) 4.3. q-analogue of the Dwork-Frobenius theorem §5. p-adic criteria for unipotent reduction 5.1. q-difference modules having unipotent reduction modulo ̟v 5.2. q-difference modules having unipotent redu...
متن کاملOn perfect 2-colorings of the q-ary n-cube
A coloring of a q-ary n-dimensional cube (hypercube) is called perfect if, for every n-tuple x, the collection of the colors of the neighbors of x depends only on the color of x. A Boolean-valued function is called correlation-immune of degree n − m if it takes value 1 the same number of times for each m-dimensional face of the hypercube. Let f = χ S be a characteristic function of a subset S o...
متن کاملPerfect colorings of the 12-cube that attain the bound on correlation immunity
We construct perfect 2-colorings of the 12-hypercube that attain our recent bound on the dimension of arbitrary correlation immune functions. We prove that such colorings with parameters (x, 12 − x, 4 + x, 8 − x) exist if x = 0, 2, 3 and do not exist if x = 1. This is a translation into English of the original paper by D. G. Fon-Der-Flaass, “Perfect colorings of the 12-cube that attain the boun...
متن کاملIdentifying Codes in q-ary Hypercubes
Let q be any integer ≥ 2. In this paper, we consider the q-ary ndimensional cube whose vertex set is Znq and two vertices (x1, . . . , xn) and (y1, . . . , yn) are adjacent if their Lee distance is 1. As a natural extension of identifying codes in binary Hamming spaces, we further study identifying codes in the above q-ary hypercube. We let M t (n) denote the smallest cardinality of t-identifyi...
متن کاملar X iv : m at h / 01 05 23 2 v 1 [ m at h . N T ] 2 8 M ay 2 00 1 MODULAR CURVES OF GENUS 2
We prove that there are exactly 149 genus two curves C defined over Q such that there exists a nonconstant morphism π : X 1 (N) → C defined over Q and the jacobian of C is Q-isogenous to the abelian variety A f attached by Shimura to a newform f ∈ S 2 (Γ 1 (N)). We determine the corresponding newforms and present equations for all these curves.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011